Reflection or refraction at a plane surface: When rays diverge from an object point P and are reflected or refracted, the directions of the outgoing rays are the same as though they had diverged from a point P^{\prime} called the image point. If they actually converge at P^{\prime} and diverge again beyond it, P^{\prime} is a real image of P; if they only appear to have diverged from P^{\prime}, it is a virtual image. Images can be either erect or inverted.

Lateral magnification: The lateral magnification m in any reflecting or refracting situation is defined as the ratio of

$$
\begin{equation*}
m=\frac{y^{\prime}}{y} \tag{34.2}
\end{equation*}
$$ image height y^{\prime} to object height y. When m is positive, the image is erect; when m is negative, the image is inverted.

Focal point and focal length: The focal point of a mirror is the point where parallel rays converge after reflection from a concave mirror, or the point from which they appear to diverge after reflection from a convex mirror. Rays diverging from the focal point of a concave mirror are parallel after reflection; rays converging toward the focal point of a convex mirror are parallel after reflection. The distance from the focal point to the vertex is called the focal length, denoted as f. The focal points of a lens are defined similarly.

Relating object and image distances: The formulas for object distance s and image distance s^{\prime} for plane and spherical mirrors and single refracting surfaces are summarized in the table. The equation for a plane surface can be obtained from the corresponding equation for a spherical surface by setting $R=\infty$. (See Examples 34.1-34.7.)

	Plane Mirror	Spherical Mirror	Plane Refracting Surface	Spherical Refracting Surface
Object and image distances	$\frac{1}{s}+\frac{1}{s^{\prime}}=0$	$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{2}{R}=\frac{1}{f}$	$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=0$	$\frac{n_{a}}{s}+\frac{n_{b}}{s^{\prime}}=\frac{n_{b}-n_{a}}{R}$
Lateral magnification	$m=-\frac{s^{\prime}}{s}=1$	$m=-\frac{s^{\prime}}{s}$	$m=-\frac{n_{a} s^{\prime}}{n_{b} s}=1$	$m=-\frac{n_{a} s^{\prime}}{n_{b} s}$

Object-image relationships derived in this chapter are valid for only rays close to and nearly parallel to the optic axis; these are called paraxial rays. Nonparaxial rays do not converge precisely to an image point. This effect is called spherical aberration.

Thin lenses: The object-image relationship, given by Eq. (34.16), is the same for a thin lens as for a spherical mirror. Equation (34.19), the lensmaker's equation, relates the focal length of a lens to its index of refraction and the radii of curvature of its surfaces. (See
Examples 34.8-34.11.)

$$
\begin{align*}
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \tag{34.16}\\
& \frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \tag{34.19}
\end{align*}
$$

Sign rules: The following sign rules are used with all plane and spherical reflecting and refracting surfaces:

- $s>0$ when the object is on the incoming side of the surface (a real object); $s<0$ otherwise.
- $s^{\prime}>0$ when the image is on the outgoing side of the surface (a real image); $s^{\prime}<0$ otherwise.
- $R>0$ when the center of curvature is on the outgoing side of the surface; $R<0$ otherwise.
- $m>0$ when the image is erect; $m<0$ when inverted.

